Произодство и продажа бетона, пескобетона, кладочного раствора

  • ПРОДАЖА И ДОСТАВКА БЕТОНА

    Бетон | Москва | Щапово

  • ПЕСКОБЕТОН

    Пескобетон | Москва | Щапово

  • ЩЕБЕНЬ

    Продажа щебня в Московской области (Щапово)

  • ПЕСОК

    Продажа песка в Московской области (Щапово)

  • КЛАДОЧНЫЙ РАСТВОР

    Кладочный раствор в Подмосковье (Щапово)

+7(926)381-13-78
+7(985)999-71-40

+7(916)213-50-95

  КРУГЛОСУТОЧНО

­

Измерительные приборы температуры воздуха


Измерители температуры воздуха - характеристики и свойства современных измерительных приборов

Температура воздуха является важным показателем, характеризующим состояние окружающей среды. Этот параметр важен как в производстве, так и быту. Поэтому в практической деятельности используются разнообразные измерители и датчики, которые помогают производить измерение температуры, контролировать ее уровень и при необходимости вносить корректировки.

Особенности работы измерителей и датчиков

Измерение температуры определенной среды может производиться несколькими типами приспособлений, которые имеют различный функционал и характеризуются определенной спецификой применения:

  • Температурные датчики. Все измерители включают в свой состав специальные термодатчики. Они могут быть контактными и бесконтактными. Существует возможность включить этот элемент в состав измерителя или же подключить к оборудованию.
  • Индикаторы – используются для проведения замеров, а затем осуществляется вывод данных на экран.
  • Термометры – это приспособления мобильного типа, отслеживающие уровень температуры.
  • Измерители-регистраторы – обеспечивают накопление данных для последующей передачи на стороннее устройство.
  • Терморегуляторы – включают функцию фиксации температурных показателей с последующим управлением соответствующим управляющим приспособлением.
  • Температурные контроллеры – многоканальные измерители, обладающие расширенным функционалом с объединением опций разных устройств.

Функционал измерительных приборов

Приспособления, которые задействуются при определении температурного режима, исполняют несколько основных функций, поэтому важно учитывать эти моменты при определении, какой измеритель лучше:

  • замеры фактического значения температуры в среде;
  • визуальное отражение температурного уровня;
  • фиксация полученных результатов в памяти прибора;
  • сигнализация о нарушении заданного температурного диапазона;
  • передача данных на рабочее оборудование.

Сложные агрегаты, оснащенные специальными температурными датчиками, способны также производить регулирование и поддерживать зафиксированный программным обеспечением температурный режим.

Разновидности приборов

Приборы, которые используются при измерении температуры, могут подразделяться на два класса в зависимости от типа датчика:

Контактные – они требуют наличия теплового взаимодействия установленного в измерительном агрегате датчика со средой, где производятся замеры. Могут применяться термометры расширительного типа и сопротивления, приспособления манометрического вида, термопары.

Бесконтактные с отсутствием необходимости в тепловом касании датчика со средой. Для измерения задействуется тепловые или оптические лучи от самого прибора. Это пирометры, радиометры, а также тепловизоры.

Жидкостные устройства стеклянного типа

Это распространенные приспособления, отличающиеся несложной системой отсчета показателей. Точность замеров достаточно высока при допустимом интервале от -190 до +10000С.

Механизм работы основан на расширении жидкости, находящейся в резервуаре. При нагревании этого резервуара она будет подниматься, как это видно на фото измерителей температуры.

В качестве жидкости чаще всего применяется ртуть, однако существуют модели с толуолом, этиловым спиртом, пентаном. Недостатки – непрочность конструкции, нечеткость шкалы, отсутствие возможности накопления данных.

Метастатический термометр

У прибора конструктивно предусмотрено наличие изменяющейся шкалы. Точность определения показателей высока – в промежутке до 5°С. Допустимый участок шкалы от -20 до +150°С. Сменить диапазон можно, произведя отлив некоторого объема ртути из капилляра в дополнительную емкость.

Термометр-дилатометр

Конструктивно включает стрежень, установленный в трубке и соединенный с ее дном одним концом. Поскольку детали изготовлены из разных материалов, то при нагревании они увеличиваются в разной степени. Разница показывает температуру подогрева. Используются как сигнализаторы и в виде регулирующих приспособлений.

Биметаллическая модель

Пружина играет роль чувствительного компонента, может быть плоской или спиральной. Пружина образуется двумя пластинами, произведенными из разных металлов, различающихся уровнем температурного расширения. Величина изгиба пружины оценивает температурные изменения.

Термограф

Работает также за счет наличия чувствительной пружины, но при этом позволяет производить непрерывную регистрацию температурного режима.

Полупроводниковый термометр

В конструкции присутствует три датчика, которые измеряют температуру в разных средах. Возможно и другое строение – 1 датчик с тремя сменными насадками.

Лазерные и цифровые модели

Измерители лазерного типа используют принцип действия инфракрасного излучения, в результате которого формируется лазерный луч. Он позволяет считывать сведения о среде и определять температуру.

Результат измерения не самый точный, но прибор обеспечивает оперативность замеров, что особенно важно на высокоточных производствах. Использовать лазерные измерители с бесконтактным действием в быту нецелесообразно из-за высокой стоимости приборов.

Электронные измерители характеризуются как эргономичные приборы. Они компактные, имеют цифровой дисплей, куда выводятся результаты измерения, а программа управления достаточно проста. Однако для установки новых показателей придется потратить некоторое время.

В контактных измерителях есть зонд. Такой термопреобразователь выносного типа может крепиться на корпусе или же соединяться кабелем. Цифровые модели бывают стационарными или переносными.

Современные измерители температуры воздуха являются удобным инструментом для контроля за состоянием среды. Они оснащены множеством дополнительных функций, например памятью, возможностью передачи данных на ПК, опцией регулирования режимов и т.д., благодаря которым в помещении обеспечиваются комфортные условия.

Фото измерителей температуры воздуха

Также рекомендуем просмотреть:

Помогите сайту, поделитесь в соцсетях ;)

instrumentgid.ru

Исследование температуры воздуха Приборы для измерения температуры воздуха

Температуру воздуха в помещениях измеряют термометрами, которые по своему назначению разделяются на измеряющие (спиртовые, ртутные, электри­ческие), рассчитанные на определение температуры в момент наблюдения, и фиксирующие (минимальные и максимальные), позволяющие получить мини­мальное или максимальное значение температуры за определенный период времени (сутки, неделю и т.д.).

Максимальный (ртутный) термометр с иглой указателем используется для фиксирования самой высокой температуры за определенный отрезок времени. Ртуть, образующая выпуклый мениск, при повышении температуры толкает иглу в сторону от резервуара, а при понижении - сжимаясь, движется обратно; игла-указатель при этом остается на месте. Температуру отсчитывают по наиболее отдаленному от резервуара концу иглы-указателя. Рабочее положение термометра – горизонтальное.

Минимальный (спиртовый) термометр использует­ся для определения самой низкой температуры воздуха за определенный отрезок времени. Внутри его капиллярной трубки, в спирте, находится игла-указатель из темного стек­ла с утолщениями на концах в виде булавочных головок.

Перед наблюдением поднимают нижний конец термометра, при этом игла-указатель под действием собственной тяжести опускается вниз до мениска спирта. Спирт, образующий вогнутый мениск, при понижении тем­пературы воздуха увлекает указатель по направлению к резервуару, а при еёповышении указатель, обтекаемый спиртом, остается на месте. Рабочее поло­жение термометра - горизонтальное.

Для наблюдений за температурой воздуха может использоваться сухой термометр психрометра Ассмана, прибора, предназначенного для измерения влажности воздуха. Цена деления его шкалы 0,2° С.

Для непрерывной регистрации колебаний температуры воздуха в течении определенного отрезка времени (сутки, неделя) применяют самопишущие приборы – термографы-самописцы (отгреч. thermo - тепло и grapho - пишу)

Термограф состоит из воспринимающей температуру части прибора биметаллической пластинки, изменение кривизны которой, в соответствии с изменением температуры воздуха, посредством системы рычажков передается стрелке с пером, записывающим термограмму на движущейся ленте, разграф­ленной по дням, часам и градусам температуры. Лента надевается на цилиндр, который вращается часовым механизмом со скоростью одного оборота в сутки (или в неделю, если термограф недельный).Существуют современные приборы-автоматы, позволяющие измерять температуру, влажность и уровень освещенности. Например, люксметр ТКА-ГЖ-УФ .

Правила измерения температуры воздуха

При измерении температуры воздуха необходимо устанавливать термометр так, чтобы на него не действовали посторонние факторы, способные его нагреть или охладить. Во время измерения не следует держать термометр в руках и наклоняться к нему близко. Измерение температуры воздуха в жилых помещениях при от­сутствии жалоб на дискомфорт производят посредине комнаты на уровне зоны дыхания взрослого человека (1,5 м от пола). В производственных помещениях температура воздуха измеряется в рабочей зоне и в соседних местах на разных уровнях. Для точного определения температурного режима помещения изме­ряют температуру воздуха в 9 различных точках одномоментно по 5 мин в каж­дой: у наружной стены (в 10 см от неё), в центре и у внутренней стены (в 10 см от неё). Измерения проводят на расстояниях 0,1-1-1,5 м от уровня пола. После измерения показания суммируют и находят среднюю температуру воздуха. За­тем определяют температурные перепады по горизонтали и вертикали. Допус­тимые суточные колебания температуры воздуха помещений для кирпичных зданий не должны превышать 2°С, для деревянных - 3°С.

Разница в темпера­туре воздуха по горизонтали от стен с окнами до противоположных стен не должна превышать в жилых помещениях 2°С, а по вертикали (около пола и на высоте головы) - 2,5°С. Оптимальная температура неодинакова для по­мещений различного назначения.

Гигиеническое значение атмосферного давления

Подверженная силе земного притяжения атмосфера оказывает давление на поверхность Земли и на все объекты, находящиеся на ней.

Барометрическое давление измеряется высотой ртутного столба в милли­метрах. Давление атмосферы, способное уравновесить столб ртути высотой 760 мм при температуре 0° С на уровне моря и широте 45°, принято считать нор­мальным, равным 1 атм. В этих условиях атмосфера давит на 1 см2 поверхности Земли с силой 1 кг, что составляет для всей поверхности тела человека около 15-18 т. Вследствие того, что наружное давление целиком уравновешивается внутренним, мы фактически не ощущаем тяжести воздушной оболочки Земли.

Гигиеническое значение имеют суточные и сезонные колебания атмо­сферного давления, наиболее выраженные при резком изменении погоды. Здо­ровые люди обычно не ощущают этих колебаний, но у некоторых категорий больных, страдающих заболеваниями сердечно-сосудистой системы, колебание барометрического давления даже на 10-30 мм рт. ст. может вызвать сосудистую катастрофу. У людей с повышенной нервной возбудимостью, с патологией суставно- мышечного аппарата ухудшается сон, настроение, может появляться чув­ство страха, головная боль, боли в суставах, мышцах и т.д.

В условиях жизни и трудовой деятельности человека нередко имеют ме­сто значительные отклонения от нормального атмосферного давления, которые могут послужить непосредственной причиной нарушения здоровья. По мере уменьшения атмосферного давления с высотой снижается и величина парци­ального давления кислорода в альвеолярном воздухе, которая при высоте около 15 км практически равна нулю. На высоте 3000-4000 м над уровнем моря сни­жение парциального давления кислорода приводит к недостаточному обеспече­нию им тканей, что сопровождается рядом функциональных расстройств. Появляются головные боли, одышка, сонливость, шум в ушах, ощущение пульса­ции сосудов височной области, нарушения координации движений, бледность кожи и слизистых оболочек. Расстройства со стороны ЦНС выражаются в зна­чительном преобладании процессов возбуждения над процессами торможения; имеет место ухудшение обоняния, понижения слуховой и тактильной чувстви­тельности, понижение зрительных функций. Весь этот симптомокомплекс при­нято называть высотной болезнью, а в случае возникновения при подъёме в горы - горной болезнью. Она встречается у летчиков и альпинистов при нару­шениях требований, предохраняющих человека от влияния низкого атмосфер­ного давления.

Повышенное атмосферное давление является вредным производственным фактором при строительстве подводных тоннелей, метро, выполнении водолаз­ных работ. При этом основными опасными факторами являются сопутствую­щее повышение парциального давления азота и кислорода. При быстром пони­жении барометрического давления может развиваться декомпрессионная (кес­сонная) болезнь. Её происхождение объясняется тем, что при пребывании в условиях высокого давления в крови и других жидкостях организма повышает­ся растворимость газов (преимущественно азота), которые при быстром выходе из зоны высокого давления к нормальному выделяются в виде пузырьков и за­купоривают просвет мелких кровеносных сосудов. В результате возникающей газовой эмболии наблюдается ряд нарушений в виде зуда кожи, поражений сус­тавов, мышц, изменений со стороны сердца, отека легких, параличей, вплоть до смертельного исхода. Для профилактики кессонной болезни необходима такая организация кессонных и водолазных работ, чтобы выход на поверхность осу­ществлялся медленно, для удаления из крови растворённых газов, без образо­вания пузырьков. Должен соблюдаться режим декомпрессии. Время пребыва­ния рабочих на грунте и при подъёме должно быть строго регламентировано.

Следует отметить, что в медицинской практике широко используется ме­тод гипербарической оксигенации для лечения некоторых заболеваний хирур­гического и терапевтического профиля.

Измерение барометрического давления в работе врача необходимо при прогнозировании погоды, при оценке условий труда, для расчета ряда санитар­ных показателей.

studfiles.net

Приборы для измерения температуры

Температура - это физическая величина, характеризующая тепловое состояние тела.

Согласно кинетической теории температурой называют физическую величину, количественно характеризующую меру средней кинетической энергии теплового движения молекул какого - либо тела или вещества.

В начале 18 века Г. Фаренгейтом была введена первая температурная шкала, названная его именем.

В 1742 году А. Цельсием была предложена привычная нам десятичная - 32температурная шкала. В качестве опорных точек для неё используются температура плавления льда (00 С) и температура кипения воды (100 0С).

В начале 19 века английский лорд Кельвин предложил универсальную абсолютную термодинамическую шкалу, которая стала стандартной в современной термометрии. Он также обосновал понятие абсолютного нуля температуры.

Температуру в термодинамической шкале обозначают в 0К, а в практической шкале - в 0С.

Формулы перевода температуры из одной шкалы в другую:

Т (К)= Т(0 С) +273,15

Т(0 С) =5/9(Т(0 F) – 32)

Классификация приборов для измерения температуры

В зависимости от методики измерений все типы термометров делятся на 2 класса: контактные и бесконтактные.

Контактные – их отличительной особенностью является необходимость теплового контакта между датчиком термометра и средой, температура которой измеряется.

Контактные приборы по принципу измерения делятся на:

1. Термометры расширения.

2. Манометрические термометры.

3. Термометры сопротивления.

4. Термопары.

Бесконтактные - это такие термометры, для измерения которыми нет необходимости в тепловом контакте среды и прибора, а достаточно измерений собственного теплового или оптического излучения.

Бесконтактные делятся на:

  1. пирометры излучения;

  2. радиометры;

  3. тепловизоры.

Термометры расширения

В них используются свойства твердых и жидких тел изменять свою длину или объем под влиянием температуры окружающей среды.

Термометры расширения бывают двух типов:

1. жидкостные;

2. твердых тел (биметаллические).

Термометры жидкостные стеклянные

Они получили большое распространение, благодаря простоте отсчета температуры, широкому температурному интервалу (от -1900С до +10000С) и достаточной точности измерения.

Измерение температуры основано на изменении объема термометрической жидкости. Термометрической жидкостью служит: ртуть, толуол, этиловый спирт, пентан и др., но лучшей жидкостью является ртуть, которая не смачивает стекло, а потому дает наиболее точные показания (от -300С до +7000С). Технические термометры градуируют в 0С. Погрешность показаний не превышает 1 деление шкалы. В зависимости от конструкции термометры бывают двух типов: палочные и со вложенной шкалой. В зависимости от назначения термометры бывают лабораторные, образцовые и технические. Разновидностью ртутных являются контактные термометры, их используют для сигнализации температуры.

Недостатки:

1. Механическая непрочность.

2. Недостаточная четкость и наглядность шкалы.

3. Невозможность регистрации показаний на бумаге и передачи их на расстояние.

Манометрические термометры

Принцип действия основан на зависимости давления в замкнутой термосистеме от измеряемой температуры.

Устройство:

1 - манометрическая часть;

2 – капилляр;

3- термобаллон.

Рис. Манометрические термометры

Прибор состоит из термобаллона, капилляра и манометрической части. Эта термосистема (1, 2, 3) заполняется газом, жидкостью или смесью жидкости с ее насыщенным паром. Термобаллон помещают в зону измерения температуры. При нагревании термобаллона давление рабочего вещества внутри замкнутой системы увеличивается. Увеличение давления воспринимается манометрической пружиной, которая воздействует через передаточный механизм на стрелку или перо прибора. Шкала градуируется в 0С. В качестве манометрической части могут быть: ОБМ, МТ, ЭКМ, МСС. Длина и диаметр термобаллона могут быть различны. Термобаллон обычно изготавливают из стали или латуни, капилляр - из медной или стальной трубки с внутренним диаметром от 0,15 до 0,5 мм. Длина капилляра может быть до 60 метров. Для защиты от механических повреждений капилляр помещают в защитную оболочку из оцинкованного стального провода. Эти приборы измеряют температуру в интервале от - 1200С до + 6000С.

Различают манометрические термометры:

  1. Газовые – (заполняются азотом, аргоном или гелием).

  2. Жидкостные - (заполнитель - полиметилсилоксановая жидкость, спирт, ртуть)

  3. Конденсационные - термобаллон частично заполняются низкокипящей жидкостью (ацетон, фреон); остальное его пространство - пары этой жидкости.

Манометрические термометры бывают: показывающими, самопишущими, контактными. Основная их погрешность ±1,5%. Манометрические термометры широко применяются в химических производствах. Они просты по устройству, надежны в работе и при отсутствии электропривода диаграммной бумаги взрывопожаробезопасны. Основной их недостаток - интерционность.

Наиболее распространены:

ТПГ - термометр показывающий газовый.

ТПЖ - термометр показывающий жидкостный.

ТГС-711-ТГС-712 - термометр газовый самопишущий

ТКП- 160 – термометр конденсационный показывающий

Термометры сопротивления (Rt)

Принцип действия термометров сопротивления основан на свойстве проводниковых и полупроводниковых материалов изменять электрическое сопротивление при изменении температуры окружающей среды. Однако, измерить температуру одним лишь термометром сопротивления нельзя. Они работают в комплекте со вторичным прибором - мостом или логометром. Термометр сопротивления погружают в контролируемую среду и соединяют электрическими проводами со вторичным прибором, шкала которого отградуирована в 0С.

Преимущества термометров сопротивления перед манометрическими термометрами:

  1. более высокая точность измерения;

  2. возможность передачи показаний на большие расстояния;

  3. возможность централизации контроля температуры (до 12 Rt может быть подключено к одному мосту);

  4. меньшее запаздывание показаний.

Термометр сопротивления состоит из чувствительного элемента и наружной (защитной) арматуры. В качестве материала для чувствительного элемента используют медь и платину. Эти материалы выбраны потому, что на их сопротивление заметно влияет изменение температуры окружающей среды (большой температурный коэффициент сопротивления), причем это зависимость близка к линейной:

Rt = Rо (1+ αt0) ,

где α - температурный коэффициент сопротивления.

Кроме того, медь и платина химически стойки в пределах измеряемых температур.

Чувствительный элемент термометра сопротивления представляет собой тонкую платиновую или медную проволоку, намотанную на каркас из диэлектрика. Концы проволоки припаивают к выводам, которые присоединяют к зажимам головки термометра. Такой чувствительный элемент помещают в стальную защитную арматуру, снабженную устройством для установки на объекте измерения.

Термометры сопротивления бывают двух типов: платиновые (ТСП) и медные (ТСМ).

ТСП - предназначены для измерения температуры от - 2000С до + 6500С; имеют следующие градуировки:

Гр. 20 (Rо=10 Ом)

Гр. 21 (Rо=46 Ом)

Гр. 22 (Rо=100 Ом).

Новые градуировки ТСП: 10П, 50П, 100П.

10, 50, 100 – сопротивление при 00С;

П – платиновые.

ТСМ - предназначены для измерения температуры от -500 до +1800С. Имеют следующие градуировки:

Гр. 23 (Rо=53 Ом) → 50 М

Гр. 24 (Rо=100 Ом) → 100 М

Выпускаются термометры сопротивления различной длины; длина монтажной части может быть до 3200 мм. В качестве вторичных приборов в комплекте с термометрами сопротивления применяют автоматические электронные мосты.

Подключение датчиков термосопротивления производиться по двух, трех или четырех проводной схеме. Двухпроводная схема подключения используется крайне редко, так как в этом случае сопротивление соединительных проводов вносит существенную погрешность в измерение. Наиболее часто используется трехпроводная схема подключения – именно по этой схеме датчики термосопротивления подключаются к контроллерам Siemens серии S300 как впрочем и к контроллерам других серий и других производителей. Четырехпроводная схема в основном используется при подключении датчиков

термосопротивления к приборам технического и коммерческого учета потребления энергоресурсов, где важно максимально точное измерение температуры. Именно при четырехпроводной схеме осуществляется полная компенсация сопротивления соединительных проводов и наибольшая точность показаний. Датчики термосопротивления чаще всего имеют четыре клеммы для подключения соединительных проводов, широко распространены и датчики с тремя клеммами. Датчики с двумя клеммами встречаются редко и, как правило, они имеют соединительные провода фиксированной длины заводского изготовления, с помощью которых датчик присоединяется к вторичному прибору.

Электронный равновесный мост

В качестве вторич­ных приборов в ком­плекте с термомет­рами сопротивления применяются обычно автоматические электронные равно­весные мосты. Равновесные мосты служат для измерения сопротивления термометра сопротивления.

Принципиальная схема равновесного моста

Устройство:

ab; bc; cd; ad - плечи моста;

ас; bd - диагонали моста;

ас - диагональ питания;

bd - измерительная диагональ;

R1, R2 - постоянные сопротивления из манганина;

Rр - переменное калиброванное сопротивление из манганина (рео­хорд);

Rл - сопротивление линий (соединительных проводов);

Rt - термометр сопротивления;

НП – нуль - прибор

Термометр сопротивления, величина сопротивления которого должна быть измерена, включается в одно из плеч моста посредством соедини­тельных проводов, имеющих сопротивление Rл. Другие плечи моста состоят из постоянных манганиновых сопротивлений R1 и R2 и переменного калиброванного сопротивления реохорда Rp, выполненного из манганина.

К одной диагонали моста подведен постоянный или переменный ток, в другую диагональ моста включен нуль - прибор.

В основу работы моста положен принцип равновесия. Он гласит: «Мост находится в равновесии, если произведения сопротивлений противолежащих плеч равны». При равновесии моста удовлетворяется равенство:

R1(Rt + 2Rл) = R2 ∙ Rp,

откуда

В этом случае разность потенциалов Ubd = 0, ток не будет протекать че­рез НП, и стрелка установится на нулевой отметке.

При изменении измеряемой температуры величина Rt изменится, и мост разбалансируется.

Чтобы восстановить равновесие, необходимо при постоянных сопро­тивлениях R1, R2, Rл изменить величину сопротивления реохорда Rр, пе­реместив его движок.

Таким образом, если откалибровать сопротивление Rр, то по положе­нию его движка при равновесии моста можно однозначно судить о вели­чине сопротивления Rt и, следовательно, об измеряемой температуре.

studfiles.net

Приборы для измерения температуры воздуха

Для измерения температуры воздуха применяются различ­ные ртутные и спиртовые термометры, а также самопишущие приборы — термографы.Термометр предназначен для измере­ния температуры воздуха в экспедиционных условиях, в том числе и на судах. Он представляет собой литую стеклянную па­лочку, по оси которой проходит капилляр, сообщающийся с ре­зервуаром термометра. Шкала с полуградусными де­лениями нанесена непосредственно на поверхность толстостен­ного капилляра.Противоположный от резервуара конец термометра заканчи­вается массивным стеклянным ушком или металлическим нако­нечником, к которому прикрепляется небольшой прочный шнур.Измерение температуры воздуха производится путем двухминутного не очень быстрого вращения термометра над головой в горизонтальной плоскости (метод праща). Отсчет по шкале термометра делается немедленно по окончании вращения: сначала должны отсчитываться десятые доли, а за тем целые градусы. Десятые доли отсчитываются на глаз с точностью до 0,1. В момент про­изводства отсчета наблюдатель должен стать так, чтобы на тер­мометр не падали прямые солнечные лучи.Определение температуры с помощью считается правильным, если результаты двух последовательных измерений отличаются не более чем на 0,50, причем за истину принимается среднее значение из двух отсчетов.Психотермический термометр основной прибор, предназначенный для измерения температуры воздуха па метеорологических станциях. Шкала этого термометра вместе с капиллярной трубкой заключена в стеклянную оправу, на верхнем конце которой укреплен металлический колпачок для удобства установки термометра в Вертикальном положении на штативе. Внизу капилляр соединяется с шарообразным резервуаром, наполненным ртутью. Деления на шкале сделаны через 0,2°, что позволяет легко производить отсчеты с точностью до 0,1°.Спаренные психрометрические термометры, резервуар, одно­го из которых обертывается батистом и смачивается водой, при­меняются для определения влажности воздуха.Для измерения температуры воздуха в экспедиционных усло­виях применяется психрометрический термометр уменьшенного габарита. Два таких парных термометра, заключенных в специ­альную оправу с вентиляционной установкой, называются аспирационным психрометром Ассмана.Судовой термометр в оправе устроен по ти­пу психрометрического термометра с делениями шкалы 0,2°. Что­бы исключить влияние прямой солнечной радиации и других ка­ких-либо источников тепла, этот термометр помещается в специ­альную оправу, состоящую из трубки и конусообразной защиты. Трубка имеет продольную прорезь, сквозь которую хорошо видел вставленный в нее термометр. Защита же состоит из трех раз­ных по размеру конусных щитков, вставленных друг в друга с зазором, нужным для обеспечения нормальной вентиляции воз­духа у резервуара термометра.Оправа термометра окрашивается белой блестящей краской, что достаточно хорошо защищает ее от различных тепловых воз­действий.Этот термометр должен крепиться на судне так, чтобы он был над водой или во всяком случае как можно дальше от палу­бы (на мостике).Максимальный термометр предназначен для опре­деления наивысшей температуры воздуха за какой-либо проме­жуток времени. По общему устройству он подобен психрометри­ческому, с тем, однако, отличием, что его шкала разбита на полуградусные деления и резервуар с ртутью имеет не шарообраз­ную, а цилиндрическую форму. «Максимальность» по­казания термометра достигается тем, что ко дну резервуара припаивается стеклянный штифт, который своим концом входит в капилляр и создает в нем сужение. При повышении температу­ры ртуть в резервуаре расширяется и протекает в капилляр, преодолевая большое трение в ме­сте сужения. Когда же после наивысшего подъе­ма температуры начинается ее понижение, то ртуть в капилляре, вследствие этого препятствия на пути движения к резервуару, остается в преж­нем «максимальном» положении; при этом в ме­сте сужения капилляра она разрывается, так как объем ртути в резервуаре при понижении тем­пературы уменьшается.Чтобы привести высоту столбика ртути в ка­пилляре к нормальному положению, необходимо, взяв термометр за верхнюю часть, несколько раз отрывисто встряхнуть его; при этом ртуть вгоняется обратно в резервуар и разрыв ее в ме­сте сужения ликвидируется. После этого показа­ние максимального термометра должно соответ­ствовать температуре воздуха в данный момент.Максимальный термометр устанавливается в горизонтальном положении.Минимальный термометр применяется для опреде­ления минимальной температуры воздуха за какой-либо проме­жуток времени.В отличие от других термометров, минимальный термометр наполнен не ртутью, а спиртом, что позволяет использовать его при самых сильных морозах. Важнейшей особенностью устрой­ства минимального термометра является то, что в капилляре и спиртовом столбике помещен свободно плавающий штифтик — легкая стеклянная палочка с округлыми утолщениями на кон­цах.Минимальный термометр устанавливается в горизонтальном положении. При понижении температуры спирт, сжимаясь, дви­жется в сторону резервуара. Пленка поверхностного натяжения на конце спиртового столбика, отходя при этом в ту же сторону, увлекает за собой и штифтик. Перемещение штифтика в сторону резервуара продолжается до тех нор, пока происходит понижение температуры. Если же после наименьшего значения темпера­туры начнется ее повышение, то спирт, расширяясь, свободно обтекает штифтик, который остается на месте наименьшего уров­ня спирта в капилляре. Отсчет минимальной температуры воздуха берется по более удаленному от резервуара (правому) концу штифтика с точностью до градуса. После каждого отсчета штифтик снова подводят к концу столбика спирта в капилляре путем на­клонения термометра.

Дополнительный термометр применяется для измерения температуры при сильных морозах (больше 37°). Устроен он так же, как и психрометрический тер­мометр.

Авторские права всех материалов на сайте защищены в соответствии с ЗУ об авторском праве, на что имеются все необходимые документы. Использование материалов в интернете (полное или частичное) возможно только с указанием активной гиперссылки на источник, открытой для индексации. Использование материалов в печатных изданиях возможно только с письменного разрешения редакции.

mirinteresnogo.ru


Смотрите также